
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 5, 1998 

P L A N E  C O N F I G U R A T I O N S  IN A F L O W  OF A P E R F E C T  GAS 

W I T H  A M A X I M U M  C R I T I C A L  M A C H  N U M B E R  

L. M. Zigangareeva and O. M. Kiselev UDC 533.6.011 

The problems in the construction of bodies which, satisfying some geometric limitations, are 
ezposed to a plane symmetric flow of a perfect (inviscid and heat-nonconducting) gas with 
a maximum critical Mach number M. are considered. Solutions are found by a numerical- 
analytical method with the use of the variables of the velocity hodograph. The Math number 
M. is found as a function of the geometric characteristics of the sought bodies on the basis of 
approzimation of numerical data. 

The critical Mach number M., i.e., the minimum free-stream Mach number responsible for a flow 
velocity equal to the critical value, is one of the most important characteristics of bodies exposed to a gas 
flow. Of practical interest are bodies that satisfy some geometric restrictions and allow the maximum possible 
value of M.. As bodies of this class, they do not experience the wave drag within the maximum range of 
free-stream velocities. We call these bodies optimal or optimal relative to M.. 

The structure of plane symmetrical optimal bodies and optimal bodies of revolution in a perfect gas 
flow was studied in [1, 2]. It was established that, for a wide range of geometric restrictions, the contours of 
optimal bodies consist of straight sections and sections on which the gas velocity equals the critical value. 
The shape of optimal bodies depends on the properties of a gas flow. An ideal perfect gas with the ratio of 
specific heats 7 = 1.4 is called an air-like gas. 

Various numerical and numerical-analytical methods were used in [3--6] to solve some problems of 
construction of plane symmetrical optimal bodies in an air-like gas flow. The results obtained were presented 
as numerical data and plots. 

In the present work, similar problems are studied in more detail using a numerical-analytical method 
proposed in [7, 8], which was previously used by the authors to study optimal bodies of revolution relative to 
M. [9, 10]. The formulas presented describe the dependence of M, on the basic geometric characteristics of 
optimal bodies, which were obtained as a result of approximation of numerical data. 

1. We consider an attached infinite steady-state potential ideal gas flow around cylindrical bodies with 
a plane of symmetry ft. In the plane z = z + i y perpendicular to the generatrices of the cylindrical surface 
of the body, the flow is assumed to be symmetric about the z axis, which belongs to f~ and is parallel to the 
free-stream velocity vector. 

Let L1 and / /1  be the lengths of the projections of the body onto the z and y axes, respectively, 5"1 is 
the area of the body cut by the z plane, and 0w is the angle of inclination of the velocity vector to the x axis 
on the surface of the body. 

Problem A. Among symmetrical bodies which satisfy one of the conditions 

H1/L1 >i ko, S1/L~ >i lo (1.1) 
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and the condition 

max lawl ~< O0 <~ ~/2 (1.2) 

(k0,/0, and 00 are given constants, and k0 and 10 < tan 00), we have to find a body that ensures the maximum 
value of M.. 

Problem A0 is obtained from the previous problem by removing condition (1.2). It was considered for 
the first time by Gilbarg and Shiffman [1]. According to [1], in the z plane the contour of a symmetrical body, 
which satisfies one of conditions (1.1) and ensures the maximum M,, consists of two equal straight sections 
perpendicular to the x axis and to the streamlines that connect these sections and on which the gas velocity 
is equal to the critical value. In other words, problem A0 reduces to the problem of a symmetrical flow past 
a fiat plate in accordance with the Ryabushinskii pattern [11], with the critical velocity on the free surface. 
Similarly, problem A reduces to the problem of a symmetrical flow around a wedge with half-angle 0o in 
accordance with the same scheme. (The solution of problem A for 00 = r / 2  coincides with that of problem 
A0.) 

Some results of a numerical solution of problem A0 and a problem similar to problem A can be found 
in [3, 4] and [5], respectively. 

Problem B. Let the section of the body by the z plane be a rectangular half-band of width/-/2, which is 
symmetric about the x axis. It is required to deform the head part (adjacent to the end face) of the body so 
that the resultant symmetrical body had an attached flow with the maximum possible value of M. if condition 
(1.2) is satisfied together with one of the conditions 

, 2 ( 1 . 3 )  L2/H2 <~ mo, S'2/H~ <~ no. 

Here L2 is the length of the head part (subjected to deformation) of the body, S~ is the cross sectional 
area lost because of deformation, and m0 and no are some prescribed constants [m0 > (1/2)cot 00 and 
no > (1/4) cot #0]. Thus, we obtain S~ = LzH2 - $2, where $2 is the area of the head part of the body. The 
inequalities (1.3) limit the loss of the "capacity" of the initially existing volume. 

Note that  the head part of the body can be equally readily considered to be the rear part. 
Using the comparative theorem [1, 2], we can easily show that the construction of an optimal body 

that corresponds to the conditions of problem B reduces to the solution of the problem of a symmetric flow 
around a wedge with a half-angle 00according to the Joukowski-Roshko pattern [11], with the critical velocity 
on the free surface. 

Some results of the solution of the problem of contouring of the optimal, in terms of M,, head or tail 
part of a plane symmetrical semi-infinite body with given values of L2,/ /2,  and 00 can be found in [6]. 

2. In the plane z = x + i y, we consider a steady subsonic vortex-free flow of an ideal gas, which is 
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symmetric about the x axis, around a wedge with the half-angle 00 ~ r/2 with the use of the Ryabushinskii 
and Joukowski-Roshko patterns. The left part of Fig. 1 shows flow regions that correspond to these schemes 
and are located above the x axis. Here bc and gh are the walls of the real and fictitious wedges, cdg arid ce are 
the free surfaces, ea is the half-line parallel to the x axis, a is the infinitely distant point, and the point d lies 
on the y axis, which is an additional axis of symmetry for the flow according to the Ryabushinskii pattern. 
In accordance with the notation in Sec. 1, the distance between the points b and h is L1, the ordinate of the 
point d is H1/2, $1/2 is the  area bounded by the contour bcdgh and the x axis, ,.92/2 is the area bounded by 
the contour bce, the x axis, and the y axis passing through the point e, and L2 and H2/2 are the lengths of 
the projections of the contour bce onto the x and y axes, respectively. 

Let h be the reduced velocity, M is the Mach number, 0 is the angle of inclination of the velocity to 
the x axis, ha and ),e are the values of h at an infinitely distant point and on the free surface, respectively 
(h, ~< ,~e ~ 1), Ma and Me are the values of M for h = ,~a and h = he, and r = h/ha and ro = he/ha.  The 
right part of Fig. 1 shows the regions ~ = {(v,0)10 < v < v0,0 < 0 < 00} in the plane (v, 0) that  correspond 
to the top left quarter  of the flow region according to the Ryabushinskii pattern and to the upper half of the 
flow region according to the Joukowski-Roshko pattern. The section BB1 corresponds to the point of flow 
bifurcation b and the  points A, C, D, and E correspond to the points a, c, d, and e, respectively. 

We introduce the stream function ~b with the use of the relations vv cos 0 = r and rv  sin 0 = - r  
Here u = p/po, p is the density of the gas, p0 is the value of p in the frozen flow, the subscripts refer to partial 
derivatives. Under the above assumptions, the stream function 4: in the region E satisfies the Chaplygin 
equation 

Lr  = (1 - M2)r + r2~brr + r(1 4- M2)Or = 0. (2.1) 

For the flow according to the Ryabushinskii pattern, we have q) = 0 on ABB1CD and ~b0 = 0 on AD. 
For the flow according to the Joukowski-Roshko pattern, we have r = 0 on ABB1CEA. 

We consider the dependences u(r)  and M(r) , .  determined by the gas properties, to be known 
differentiable functions, which are analytical in the vicinity of the point r = 1 (h = ha). The coefficients 
of Eq. (2.1) can be expanded into power series with respect to r = r - 1: 

r 2 = 1 + 2 r 1 6 2  
O0 

r(1 + M 2) = ~ qkr k, 
k=O k=O 

1 dkM 2 
p o = l - M l ,  Pk = k! ~ r=1' k =  l, 2 , . . . ,  (2.2) 

1 - M  2 =~_,pk~ k, 

q0 = 2 - p 0 ,  ql = q0 - P l ,  qk = -Pk-1 - P k ,  k = 2, 3, . . . .  

We represent the stream function r as r = r + X, where r is a function that  describes the behavior 
of r in the vicinity of the singular point A. We introduce the variables a and w: 

(2.3) 

According to (2.3) and r = a-lacosw, we have 

a0 = sinw, a r  = acosw,  we = a -1 cosw, Wr = - ~ a  -1 sinw. (2.4) 

We seek the function r in the form of an asymptotic expansion with respect to the small parameter a. 
We assume that  

r = ~bl + r + . . . ,  Ck = hk(cr)h(w); 

and require that  the conditions 

Ca >0, 

hk+l(a)/hk(a)---~O, a .*O,  k = l , 2 , . . .  (2.5) 

0 < w < ~" (2.6) 
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for both flow patterns and also the conditions 

~bk = 0, w = 0,~r, k = 1, 2 , . . .  (2.7) 

for the flow according to the Joukowski-Roshko pattern and the conditions 

~ k = 0 ,  w=~r ;  ~bk0=0, w = 0 ,  k = l ,  2 , . . .  (2.8) 

for the flow according to the Ryabushinskii pattern be satisfied. 
We represent the main term in the expansion (2.5) in the form ~bl = r (n = const, r~ > 0). 

Assuming that ~" = o~-lcrcosw in (2.2) and using (2.4), we can show that,  for ~bl = a-" f1(w) ,  

L~bl = R1 + AR1, RI - tr2tr-'~-2(n2fl + f['), AR1 = O(r 

Equating R1, the main term in the expansion of L~bl with respect to powers of a,  to zero and taking 
into account (2.6) and (2.7) or (2.6) and (2.8), we obtain the boundary-value problem for the function fl(w). 
In particular, for the flow according to the Joukowski-Roshko pattern, the following boundary-value problem 
is obtained: 

n z f l q - f [ ' = O ,  11(0)- - - /1(a ' )=0,  / l ( w ) > O ,  O < w < I r ,  n > O .  (2.9) 

It is easy to see that  there is a unique (to within constant factor at f l )  solution of problem (2.9): n = 1 
and fl  = sinw. Thus, we obtain that  tbl = ~-1 sinw. 

In substituting ~b = ~bl = ~r-lsinw into (2.1), the terms of the order of a -3 ,  which result from 
differentiation of ~bl, cancel each other, and the residual of the order of tr -2 is left. We seek the term of the 
expansion (2.5) that  follows ~b~ in the form ~b2 = f2(w) by requiring that,  after the substitution of ~b = ~bl + ~b2 
into (2.1), the terms of the order of tr -2 cancel each other, and the residual of the order of ~r -1 be left. Taking 
into account (2.7), we obtain the following boundary-value problem for f2(w): 

ct2f~ ' = 61sinwcosw+69. sin 3wcosw, ~1 = 6 p l  or-1 -- 12or + 2~q0, 
(2.10) 

62 = 1 6 5  - 8p1  - 1 ,  f 2 ( 0 )  = 0. 

There exists the unique solution of problem (2.10): 

~b2 = f2(oa) = -- (261 + ~)ot -2s in2w + 1 - ~ 6 z a -  sin4w. 

It is natural to seek the function ~b3 in the form ~b3 = af3(w) by requiring that,  after the substitution 
of ~b = ~ba + ~b2 + ~b3 into (2.1), the terms of the order of r -1 cancel each other, and the residual of the order 
of unity be left. In this case, we obtain the following boundary-value problem for f3: 

/3 + /~ '  = F3, y~(0) = / ~ ( ~ )  = 0 (2.11) 

(F3 is a known function of w). Since the function f = sinw satisfies the conditions f + f "  = 0 and f(0) = 
f(~r) = 0, the solution of problem (2.11) is found to an accuracy of the term qsinw, where q = const. The 
resultant indeterminacy shows that  the behavior of ~b in the vicinity of the single point A can be refined only 
with allowance for the complete boundary conditions for this function. 

We now pass to the flow according to the Ryabushinskii pattern. Assuming that ~bj = r 
equating to zero the main term in the expansion of L~b~ with respect to powers of ~r, and taking into account 
(2.6) and (2.8), we obtain the boundary-value problem 

n2 f~ + f[~ = O, f~Or) = f[(O) = O, f~(w) > 0, 0 < w < 7r, n > 0. (2.12) 

The solution of problem (2.12) has the form n = 1/2 and f~ = cos (w/Z). Thus, ~ = a-~/2 cos (w/2). 
In finding the function ~b2 there arises an indeterminacy similar to that described above for the function 

~b3 in the flow problem according to the Joukowski-Roshko pattern. 
3. Knowing the function ~0, we can pass to the solution of the boundary-value problem for ~b, using 

the finite-difference method. Two approaches are possible. The first approach is based on finding the function 
X = tk - ~b ~ from the solution of the corresponding boundary-value problem for the equation LX = - L O  ~ 
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Using this approach, we can continue the procedure for finding the function ~b ~ that  satisfies the condition 
L~ ,~ ~ 0 for a --* 0 and the boundary conditions of the corresponding problem on the sections of the boundary 
adjacent to the singular point  A (the ambiguity of the solution is not important  here). The  second approach 
is based on the idea tha t  the function ~b is close to ~b ~ in the vicinity of the point A. In this approach, the 
values of @0 on a certain rectangular broken line, which separates the vicinity of the point A from the other 
part of the domain E, are used as the boundary conditions of the  function ~b in solving the corresponding 
boundary-value problem for the equation L~b = 0. Calculations demonstra ted greater simplicity and reliability 
of the second approach, which was used to obtain the results of the present paper. 

When the values of Aa and Ac are close to each other, the gradients of @ near the sections AD and 
AE are large. This makes it necessary to transform the independent  variables in a numerical solution of the 
problem. In particular, the  following transformations [12, w 5.6], which transform E into E1 = {(~, r/)[0 < C < 
1.0 < r /<  1}, are convenient: 

= F(1 + fll,~'/T0), ~/= 1 - F(1 -I- f12,1 - 0/00), (3.1) 

F ( x , y )  = ln[(x + y)/(x - V)]{ln[(x + 1 ) / ( x  - 1)]} - 1  

(the parameters/~1 and/~2 are small positive numbers).  
In the domain El ,  we used the finite-difference scheme with a five-point approximation on a uniform 

rectangular grid. The  method  of sequential upper relaxation is used for its realization. 
After determining the  function ~b(r,8), the transition to the physical plane is performed using the 

formulas 

vr2Zr -- [(M 2 - 1)@o + ir~br] exp (iO.), vrzo = [r~br + i~b0] exp (iO) (3.2) 

(z = x + ill). The  derivatives ~br and ~be are found using the spline-approximation of the grid values of ~b. 
If the function ~b is the  solution of Eq. (2.1), then the values of x and y determined from (3.2) should 

be independent of the path  of integration. This reasoning is used to rationally choose the parameters ~/1 and 
Az in (3.1) and control the  accuracy of calculations. 

In particular, the  following formula can be obtained from (3.2): 

0 

1 [~bcos0 + f(r~br + ~b)sinOdO] + fl(r). (3.3) Y=v--r 
0 

We consider the  flow according to the Joukowski-Roshko pattern.  In this pat tern,  f~(r) = 0 for 0 ~< r < 1 
and f /(r)  = c o n s t  > 0 for 1 < r <~ r0. According to (3.3), for a ~ 0 (r  --, 1 and 0 ~ 0) we have 

0 

y ~ , I =  --1 [~bl+Jl+J2l+II(r) ,  J1 = /d/lOdO, 
va o 

where ~bl = 0 , - I  sin~o and v~ is the  value of v for r = 1 (X = X~). 
Using (2.3) and (2.4), it is easy to see that  

Yl =  [sin , -g( ,)cost, I, J2 = asin ,cos ,- 

It follows that  

g ( w )  = w - < w 

g(~)  -- ~,  

(C < o). 

0 

J2 =/OlrOdO, 
0 

( C > O ) ;  

I - - * - -  a - l + a +  for ~ < 0 ,  w-*~r /2 ,  
va 

I ~ - -  ~"1+o ' -  +fl(r for r  ~---,~'/2. 
/,i a (~>0  

For the quant i ty  y to be continuous on the straight line w = lr/2 (C" = 0), it is necessary to set 
n(~') = c~r/va for ~ > 0. Thus,  for ~1 = a -1 sinw (the function ~1 is determined to an accuracy of constant 
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TABLE 1 

M~ H1/h L1/H, (L1/HI)1 L~/S1 Cz 

0.7 
0.8 
0.9 
0.95 
0.98 
0.99 

2.58882 
3.93988 
8.04174 
16.2770 
40.9940 
82.1698 

3.90015 
8.47711 
27.2457 
81.1159 
329.112 
937.916 

3.61713 
7.96622 
26.2955 
79.7016 
327.669 
938.679 

4.53994 
10.1306 
33.1951 
99.4350 
404.376 
1153.00 

1.73478 
1.45803 
1.27772 
1.21198 
1.17843 
1.16810 

TABLE 2 

M~ 

0.7 
0.8 
0.9 
0.95 
0.98 
0.99 

H2/h 

2.22845 
3.35659 
6.80670 
13.7467 
34.6076 
69.3864 

L2/H2 

1.15456 
2.61490 
8.61855 
25.8366 
105.211 
300.325 

0.98182 
2.14113 
6.85351 
20.3511 
82.5795 
235.549 

s 2 $2/H2 

0.17274 
0.47377 
1.76504 
5.48553 
22.6313 
64.7756 

C~ 

1.73565 
1.45822 
1.27773 
1.21198 
1.17842 
1.16809 

QH2h -1 

1.73611 
1.45891 
1.27869 
1.21265 
1.17936 
1.16916 

factor) we have y = alr/ua on AE. This relationship can be also used to control the calculation accuracy. 
We introduce into consideration the cavitation number Q and the drag coefficient of the wedge Cz 

when the latter is exposed to a compressible fluid (gas) in accordance with one of the cavitation schemes 
considered: Q = 2(pa - pc)/(paVa 2) and Cz = 2X/(paVa2h). Here Va, pa, and p~ are the velocity, density, and 
pressure of the fluid at an infinitely distant point, pc is the pressure in the cavity, X is the wedge drag, and h 
is the length of the projection of the wedge onto the y axis (h = 2/sin00, where l is the length of the wedge 
cheek bc). 

The following relationship is valid for the Joukowski-Roshko pattern [11]: 

C, = Qg2h -1, (3.4) 

which can be also used to control the accuracy of the results obtained. We note that,  for a perfect gas with 
the ratio of specific heats 7, for Mc = 1 we have 

o = 7fi . - + 7-4-i-  

4. Using the above technique, a symmetrical flow of an air-like gas around a wedge was calculated 
according to the Ryabushinskii and Joukowski-Roshko patterns under the condition that  Mc = 1. Systematic 
calculations were performed for 00 = 30, 45, 60, 75, and 90 ~ and M, = 0.7, 0.8, 0.9, 0.95, 0.98, and 0.99 
(these values of 00 and M~ are called the reference values). A grid obtained by division of each side of the 
square E1 into 100 equal parts was used. The values of r in seven internal nodes of the grid in the vicinity 
of the point A were used as the additional boundary values of r [we assume that  r = a-1/2 cos @/2) for the 
Ryabushinskii pat tern and r = a-1 sinw + f2(w) for the Joukowski-Roshko pattern]. For all the reference 
values of O0 and M~, condition (3.4) in problem B was satisfied with an error less than 0.15%. 

Some results of the solution of problems A0 and B for O0 = r / 2  are listed in Tables 1 and 2, respectively 
(h is the length of the straight section which forms the front part of the contour of the optimal body). 

By approximating the  calculation data by the least-squares method, we obtained the dependences 
M. = FI(H1/L1,8o), M. = F2(S1/L2,8o), M. = F3(H2/L2,Oo), and M. = F4(H2/S~, O0), which characterize 
the solutions of problems A and B for an air-like gas in the domain ~r/6 <~ O0 ~< ~/2, 0.7 ~< M, ~< 1 and have 
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TABLE 3 

Problem A 

i = 0  i = 1  i = 2  

a(~ ) 
a(~ ) 

0.96658 

0.40108 

-0.40975 

1.11427 

0.40026 

-0.64369 

0.00558 

-0.09152 

0.66306 

0.00597 

-0.10870 

1.37091 

0.00487 

-0.12140 

0.71713 

0.01947 

-0.47327 

2.72700 

.(3) 

a(~'~) 

Problem B 

i = O  i = 1  i = 2  

0.45359 

0.06727 

-0.05215 

1.67544 

-0.81137 

-0.81394 

0.00061 

-0.01306 

0.08993 

0.03082 

-2.32541 

4.03693 

0.00952 

-0.08314 

0.18506 

-0.04168 

0.11848 

-0.83213 

the following form: 

F k ( t k , O o ) = [ l + . l  -k + ~ 2  ~ + " 3  ~kJ , 

, , o  + - - O o )  

Hi $I H2 
t l = "-'~l , t 2 = "~i , t 3 = L"'- 2 , 

k = 1 , 2 , 3 ,  n = 1 , 2 , 3 ,  (4.1) 

F4(t4,0o) = [1-{- a~4)p-t- a~4)p2 + a~4)p3] -1, l ~  - _ 1 0o) , 
\ 

t , =  p = 0 . 1  4 cot 

.=1,2,3. 

The values of the coefficients a (k) are listed in Table 3. 
nt 

For all the reference values of the parameters 80 and Ma = M,, the error of approximation of the 
numerical data by formulas (4.1) does not exceed 0.05%. For 00 = lr/2, in deriving formulas (4.1) we used the 
calculation results obtained for 12 different values of Ma within the range [0.7, 0.995], including the reference 
values; in this case the approximation is more accurate. In particular, the relationship 

F1 (tl, z'/2) = [I + 0.96658ti 2/3 + 0.40108ti 4/3 - 0.40975t12] -I, (4.2) 

where tl = HI/L1, approximates the numerical data with an error less than 0.006%. 
Figure 2 shows the dependence of M, on tl = H1/L1 (curves 1-3 for 80 - ~r/2, ~r/4, and ~r/6) and 

on 00 (curves 4-6 for tl = 0.2, 0.1, and 0.05). The dependences of M. on tk and 80 for k = 2, 3, and 4 are 
similar in shape. As tk decreases (as M. approaches unity), the dependence of M. on 80 becomes weaker 
(OFt(tk, 00)/000 ~ 0 for tk --* 0). Each of the functions Fk(tk, 00) is monotonically decreasing relative to tk 
and monotonically increasing relative to 80, at least for lr/6 ~< 80 <~ ~r/2 and the values of tk that ensure 
satisfaction of the condition Fk(tk, 00)/> 0.7. 

In solving problem A0 for a perfect gas with the ratio of specific heats 7, Fisher [3] used the equation 

/ I  -- M 2 7 + i M 4 
g~p+gse'l'9gp=0, p---- ~ dA, 9= 2 (1-M2)3/2" 

1 

The boundary-value problem is solved for the function X = g - g0, where g0 = Im{ i[0 + i(# - #a )] }- 1/2 

and #a is the value of p for A = Aa. Calculations were performed for 7 - 1.4 and three values of Ma. According 
to [3], we have LI/HI = 4.30, 7.87, and 14.36 for Ma = 0.72, 0.80, and 0.86, respectively. The method of 
the present paper yields LI/HI = 4.49, 8.48, and 15.70 for the same values of M,. This difference in the 
results can be explained by the use of a rather rough grid in [3] and by the need to eliminate a part of the 
semi-infinite region of variation of the parameters # and 0 (-co < # ~ 0). 

The method used by Schwendeman et al. [4] to solve problem A0 is close to the method of the present 
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paper. The results are plotted as H1/L1 versus M= for 7 = 1.4, which is in good agreement with our points. 
For a perfect gas with the ratio of specific heats 7, the following formula is obtained in solving problem 

A0 on the basis of the transonic theory of small perturbations [4]: 

1 - M 2 = K(H1/L1)2/3, g = [ 7 + 1 [ '(5/6)] 2/3 
M~ .~r ~ F(4/3)J " (4.3) 

The values of L]/H1, calculated in accordance with (4.3) for 7 = 1.4 and K = 1.93353, are listed in 
Table 1 as (L2/H1)1. The difference between the values of L1/H1 and (L1/H1)l decreases monotonically as 
M= increases from 8% for M= = 0.7 to 0.08% for Ma = 0.99. 

In accordance with (4.3), the following asymptotic relationship is valid for an exact solution of problem 
A0: 

1 - M] ,'., K(H1/L1) 2D, Ma --* 1. (4.4) 

At the same time, according to (4.2) we have 

.. (1).2/3 1.93316(H1/L1)2/3, 1 - M 2 ~ zal0 1; 1 ---- M= --, 1, 7 = 1.4. 

Thus, the coefficient a~10 ) found as a result of approximation of numerical data, differs only by 0.02% from the 
value that ensures satisfaction of the asymptotic relationship (4.4) for 7 -- 1.4. This supports the reliability 
of our results. 

Brutyan and Lyapunov [5] considered a problem similar to problem A. The solution of the problem 
of flow of an air-like gas around a wedge according to the Ryabushinskii pattern was constructed by the 
finite-difference method in the physical plane for prescribed parameters fl = I cos So~L] and M=. The plots 
for M, versus 5'1/L21 for fl = 0.2 and 00 versus fl for Q = 0.5, 0.9, and 1.5 are presented in [5] for an optimal 
body relative to M,. 

Mackie [13] was the first to study the problem of a symmetrical gas flow around a wedge according to the 
Joukowski-Roshko pat tern at supersonic velocity on the free surface, which forms the basis of the solution of 
problem B. Using the method of separation of variables in combination with the method of contour integrals, 
Mackie derived analytical relations for the stream function r  which have the form of series whose terms 
contain hypergeometric functions. The flow parameters based on these relations were not calculated. 

The same problem was considered by Shcherbakov [6] who constructed a function r that describes the 
behavior of the stream function r 0) in the vicinity of the singular point and vanishes at the boundary of 
the domain of variation of the velocity hodograph. The function X = r - r satisfies the equation LX = - L e o  
(L~b = 0 is the Chaplygin equation) and homogeneous boundary conditions. To find it, we use an approach 
based on the construction of the Green function. As a result, X is found as a series whose terms contain 
multipliers, which are hypergeometric functions, and also simple and iterated integrals with integrands which 
contain the same functions. The resultant representation r = r -{- X is used to calculate the characteristics 
of the flow considered. The main result of [6] is the plot of H2/2L2 versus [00] (0 ~< [00[ ~< 90 ~ for M, = 
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0.3.0.4, . . . ,0 .9  for an air-like gas. 
The method of the present paper yields results which are in reasonable agreement with the plots 

presented in [5, 6]. 
5. Thus, the basic result of the present paper is analytical functions of the critical Mach number M, 

versus tk and 00, which were found for the first time and characterize the solution of problems A and B for 
an air-like gas in the range of arguments which is most important for practice. We note that the function 
Fl(h,Oo) for 00 < ~r/2 and also the functions F2(t2, 00) and F4(t4, 00) have not yet been studied. 

Obviously, for arbitrary plane symmetrical bodies of finite length, which satisfy condition (1.2) and 
are exposed to an attached symmetrical potential flow of an air-like gas, the following relations are valid: 

M. ~< F,(H,/L,,Oo), M. <~ F2(S,/L~,Oo). (5.1) 

Similarly, for arbitrary plane symmetrical semi-infinite bodies obtained by means of deformation of the 
front part of a rectangular band, which satisfy condition (1.2) and are exposed to an attached potential flow 
of an air-like gas, the following relations are valid: 

M. ~ Fs(H2/L2,0o), M. ~< F4(H~/S~, 0o). (5.2) 

A strict equality in (5.1) and (5.2) is fulfilled only for optimal bodies relative to M.. 
The authors are thankful to G. Yu. Stepanov for his attention to this work. 
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